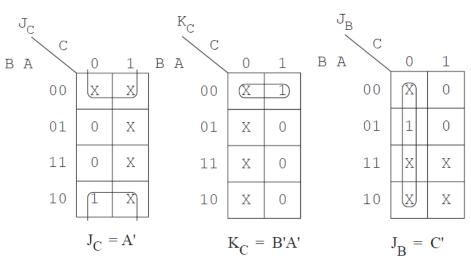
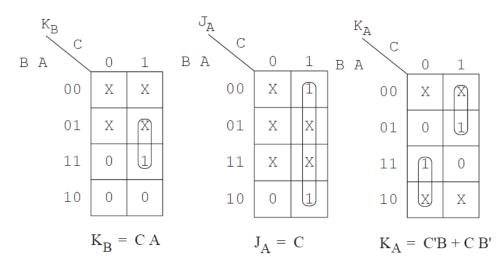
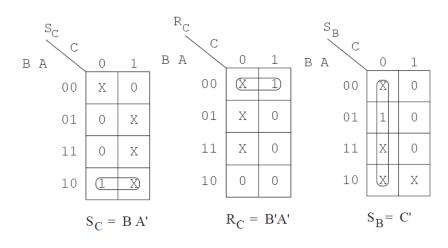

12.7

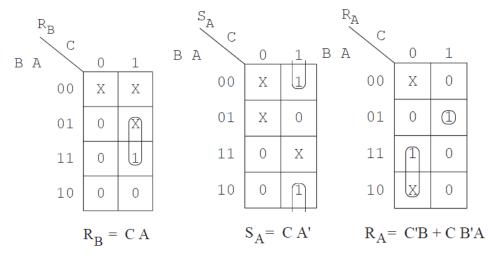
(a)




For D flip-flop: 000 goes to 011 because $D_C D_B D_A = 011$

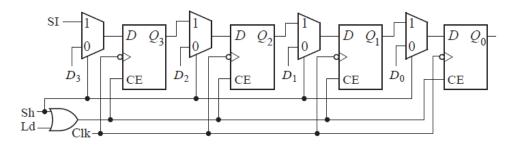
(b)


12.8

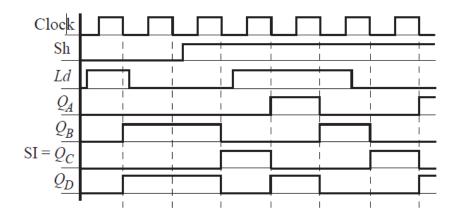


In state 000, $J_{\rm c} = A' = 1, K_{\rm c} = B'A' = 1, C^+ = C' = 1$ $J_{\rm B} = C' = 1, K_{\rm B} = CA = 0, B^+ = 1$ $J_{\rm A} = C = 0, K_{\rm A} = CB' + C'B = 0, A^+ = A = 0$ So the next state is $C^+B^+A^+ = 110$

(b)



In state 000, $S_{\rm C} = BA' = 0, R_{\rm C} = B'A' = 1, C^+ = 0$ $S_{\rm B} = C' = 1, R_{\rm B} = CA = 0, B^+ = 1$ $S_{\rm A} = CA' = 0, R_{\rm A} = C'B + C'BA = 0, A^+ = A = 0$ So the next state is $C^+B^+A^+ = 010$


12.11

The flip-flops change state only when Ld or Sh = 1. So CE = Sh + Ld. Now only a 2-to-1 MUX is required to select the input to the D flip-flop.

12.13

Notice that *Sh* overrides *Ld* when Sh = Ld = 1

12.35

(a)

Q
$$UV$$
 UV UV UV $= 00$ $= 01$ $= 11$ $= 10$ 00x1011x00

Q	UV = 00	U V = 01	U V = 11	U V = 10
0	0	Х	1	0
1	1	х	0	0

$$Q^+ = U'Q + VQ'$$

(b)

$Q Q^+$	UV
00	x 0
01	11
10	1 x
11	0 0

 $Q^+ = A + BQ.$ (c)

	x.			
		(Q+	
Q	AB	AB	AB	AB
	= 00	= 01	= 11	= 10
0	0	0	1	1
1	0	1	1	1

	Q'			
Q	AB	AB	AB	AB
	= 00	= 01	= 11	= 10
0	0	0	1	1
1	0	1	1	1

		U	V	
Q	A B = 00	AB = 01	A B = 11	A B = 10
0	x0	x0	11	11
1	1x	00	00	00

$$\mathsf{U}=\mathsf{A}'\mathsf{B}'+\mathsf{Q}'$$

12.36

(a)

		(2 ⁺	
Q	M F = 00	M F = 01	M F = 11	M F = 10
0	1	1	0	Х
1	1	0	0	х

$$Q^+ = F' + Q'M'$$

(b)

$Q Q^+$	M F
00	11
01	0x
10	x1
11	00

(c)
$$Q^+ = CQ + DQ'$$

		(Q+	
Q	C D	CD	CD	C D
	= 00	= 01	= 11	= 10
0	0	1	1	0
1	0	0	1	1

	M F			
Q	C D	C D	C D	C D
	= 00	= 01	= 11	= 10
0	11	0x	0x	11
1	x1	x1	00	00

 $\mathsf{M}=\mathsf{D}'\mathsf{Q}'\qquad\mathsf{F}=\mathsf{C}'+\mathsf{Q}'$

12.38

Truth table:

ABCD	$A^+B^+C^+D^+$	$J_{\rm A}K_{\rm A}J_{\rm B}K_{\rm B}J_{\rm C}K_{\rm C}J_{\rm D}K_{\rm D}$
0000	0 0 1 1	0 X 0 X 1 X 1 X
0001	0 1 0 0	0 X 1 X 0 X X 1
0010	0 1 0 1	0 X 1 X X 1 1 X
0011	0 1 1 0	0 X 1 X X 0 X 1
0100	0 1 1 1	0 X X 0 1 X 1 X
0101	$1 \ 0 \ 0 \ 0$	1 X X 1 0 X X 1
0110	1 0 0 1	1 X X 1 X 1 1 X
0111	1010	1 X X 1 X 0 X 1
$1 \ 0 \ 0 \ 0$	1011	X 0 0 X 1 X 1 X
1001	1 1 0 0	X 0 1 X 0 X X 1
1010	1 1 0 1	X 0 1 X X 1 1 X
1011	1 1 1 0	X 0 1 X X 0 X 1
1100	1 1 1 1	X 0 X 0 1 X 1 X
1101	X X X X	$\times \times \times \times \times \times \times \times \times$
1110	X X X X	$\times \times \times \times \times \times \times \times$
1111	XXXX	$\times \times \times \times \times \times \times \times \times$

Using Karnaugh maps: $J_A = A + BD + BC$, $K_A = 0$; $J_B = C + D$, $K_B = C + D$; $J_C = D'$, $K_C = D'$; $J_D = 1$, $K_D = 1$